

Canal Current

A wave of information for Cape Coral's Canalwatch volunteers

Newsletter: 4th Quarter 2021

Environmental News

Native Plant Profile

Manatees

Manatees often seek refuge and food in Cape Coral's canals, so please heed "idle speed" and "no wake" zones throughout the canals and surrounding waterways. This includes any waterway within a quarter mile of the shoreline. These are designated as manatee zones.

During the cooler weather months, manatees will seek warmer water. Often this could be a secluded canal or the warm water near the Florida Power & Light (FPL) power plant. This popular spot for this marine mammal is also a popular spot for manatee viewing. Manatee Park is located directly across from the FPL plant on Palm Beach Blvd. in Fort Myers and provides a great opportunity to see manatees in the cooler months.

No matter what time of year, it is best to be a responsible boater and heed "idle speed" and "no wake" signs for these gentle marine mammals and for safety reasons within our canal waterways.

For more information on Manatee Park, please visit leeparks.org or call 239-690-5030.

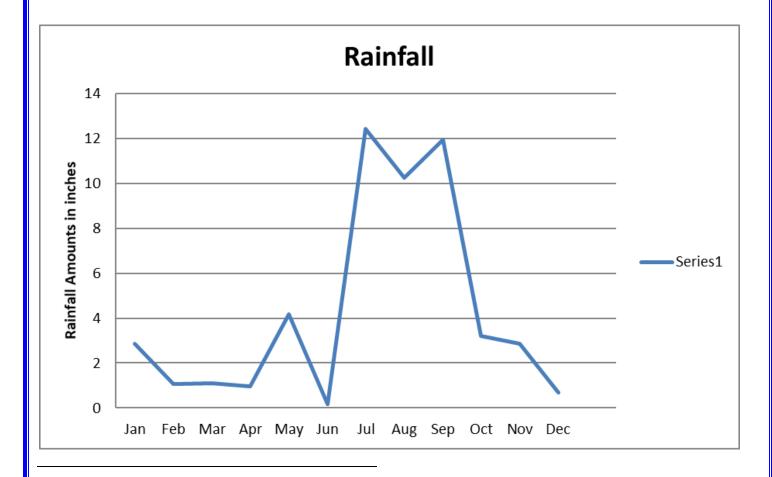
Inside This Issue:		
Manatees / Native Plant	1	
2021 Year in Review	2	
Extra Field Data	3	
Lab Data	4-5	
Upcoming Events	6	

Questions? Comments? Let us know! (239)574-0785

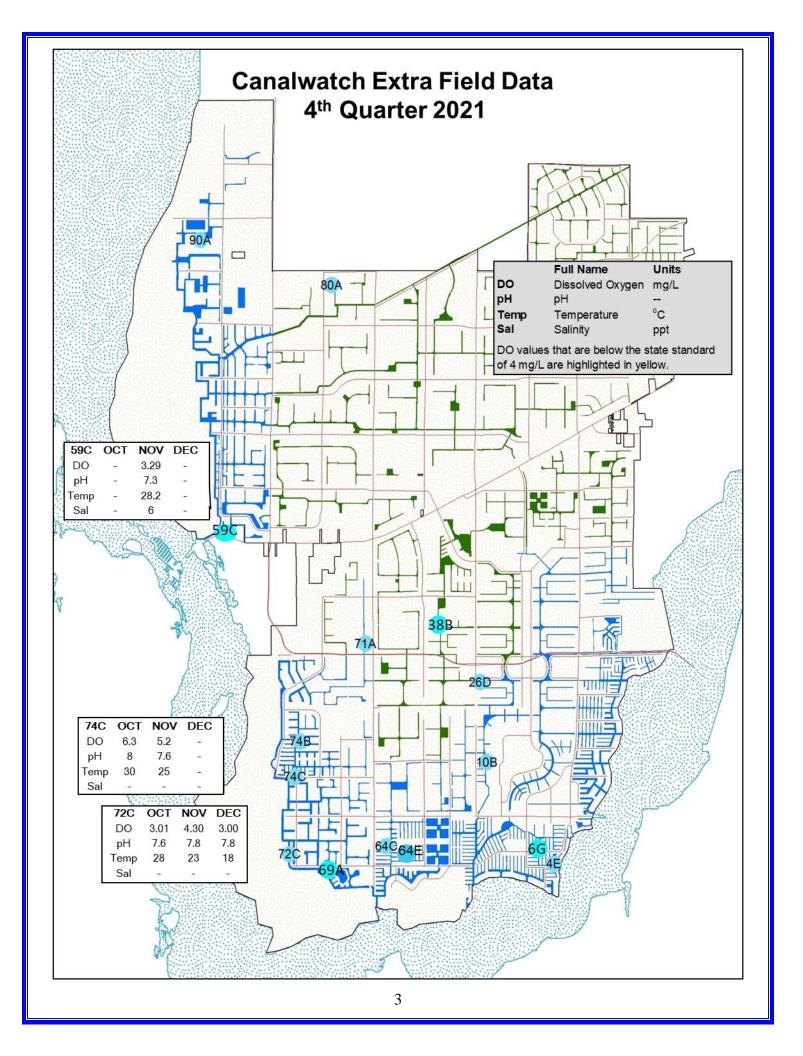
Harry: hphillips@capecoral.net

False Buttonweed Spermacoce verticillata

False buttonweed can be an unwelcome weed to most homeowners. However, letting of few of these white flower clusters grow will be very attractive to butterflies, bees, and wasps. Especially the predatory wasp, *Larra bicolor*. An introduced predator to mole crickets, a common turf grass nuisance. This hardy weed is found just about anywhere grass will grow.


While it might not be desirable in turf grass, this plant is useful in butterfly gardens, as it does provide a nectar source.

Continued on next


The next time you see it popping up in a plant bed or growing alongside a road, take note as to what is buzzing, flying or perched on its bloom. The tiny flowers surprisingly provide plentiful nectar for those pollinating visitors.

2021 Year in Review

- In 2021, we received 290 Canalwatch samples. Thank you for all your hard work and participation this year!
- Also in 2021, we received 141 Chlorophyll samples in addition to our regular samples.
- We trained 3 new volunteers this year. Welcome!
- There are currently 35 active stations.
- Total average rainfall for Cape Coral for the past year was about 58 inches.

Rainfall amounts are from January 2020 to December 2021 and are an average of monthly totals from all volunteers who recorded rainfall data.

	bd = be	low dete	ection		benchr	nark num	bers: M	arked d	ata are i	n the hig	hest 20	l% of valu	ues foun	d by Ha	nd et. al,	, 1988.			
			Octobe	er 2021				N	lovemb	er 202	1								
	NO2	NO3	NH3	TKN	T-N	T-P04	NO2	NO3	NH3	TKN	T-N	T-P04	NO2	NO3	NH3	TKN	T-N	T-P04	Avg
	<1.0	<1.0	none	set	<2.0	<0.46	<1.0	<1.0	none	set	<2.0	<0.46	<1.0	<1.0	none	e set	<2.0	<0.46	TSI
4-2A	0.05	0.10	0.2	1.1	1.20	0.10	0.05	0.18	0.1	0.5	0.68	0.10							59.07
5D	0.05	0.05	0.2	1.1	1.10	0.11	0.05	0.25	0.05	0.6	0.85	0.10	0.05	0.16	0.1	0.5	0.66	0.10	54.56
5H	0.05	0.05	0.1	0.8	0.80	0.10	0.05	0.15	0.05	0.6	0.75	0.10	0.05	0.18	0.05	0.4	0.58	0.10	49.84
51	0.05	0.05	0.1	0.9	0.90	0.10	0.05	0.20	0.05	0.6	0.80	0.10	0.05	0.05	0.05	0.5	0.50	0.10	51.47
6F	0.05	0.32	0.3	1.5	1.82	0.21	0.05	0.32	0.1	1.2	1.52	0.16	0.05	0.26	0.1	0.7	0.96	0.10	60.34
7E													0.05	0.31	0.05	0.7	1.01	0.10	56.98
9H	0.05	0.10	0.2	0.7	0.80	0.10	0.05	0.29	0.1	0.9	1.19	0.15	0.05	0.33	0.1	0.6	0.93	0.10	54.68
12H	0.05	0.20	0.2	1.1	1.30	0.14	0.05	0.34	0.05	0.8	1.14	0.14							57.52
13B													0.05	0.39	0.1	0.7	1.09	0.25	60.20
16E	0.05	0.05	0.1	0.6	0.60	0.05	0.05	0.23	0.1	0.7	0.93	0.15	0.05	0.05	0.05	0.5	0.50	0.05	51.00
16 I	0.05	0.05	0.1	0.8	0.80	0.05	0.05	0.05	0.05	0.5	0.50	0.05	0.05	0.05	0.05	0.4	0.40	0.05	48.29
18K													0.05	0.17	0.05	0.7	0.87	0.10	59.73
18L	0.05	0.11	0.05	0.9	1.01	0.14	0.05	0.05	0.05	0.6	0.60	0.05	0.05	0.05	0.05	0.7	0.70	0.10	50.98
18M	0.05	0.05	0.05	0.9	0.90	0.10	0.05	0.25	0.05	0.7	0.95	0.11	0.05	0.05	0.05	0.6	0.60	0.10	58.98
19D	0.05	0.05	0.05	1.5	1.50	0.15	0.05	0.05	0.05	0.8	0.80	0.10	0.05	0.33	0.05	0.8	1.13	0.10	63.18
21D	0.05	0.05	0.05	0.8	0.80	0.10	0.05	0.36	0.05	0.9	1.26	0.14	0.05	0.27	0.1	0.6	0.87	0.10	55.98
21 I	0.05	0.10	0.05	0.6	0.70	0.05	0.101	0.24	0.1	0.8	1.04	0.12							54.21
24D	0.05	0.05	0.05	0.8	0.80	0.10	0.05	0.24	0.05	0.7	0.94	0.10	0.05	0.10	0.3	0.8	0.90	0.10	53.42
30D	0.05	0.05	0.05	0.6	0.60	0.05	0.05	0.05	0.05	0.8	0.80	0.26	0.05	0.10	0.1	0.6	0.70	0.05	50.37
41B													0.05	0.05	0.05	0.7	0.70	0.05	51.65
44A	0.05	0.05	0.05	0.7	0.70	0.05	0.05	0.05	0.05	0.6	0.60	0.05	0.05	0.10	0.2	0.7	0.80	0.10	51.33

45D	0.05	0.05	0.05	0.6	0.60	0.05	0.05	0.05	0.05	0.7	0.70	0.05	0.05	0.05	0.1	0.5	0.50	0.05	50.2
48A	0.05	0.05	0.05	2.6	2.60	0.05	0.05	0.05	0.05	0.5	0.50	0.05	0.05	0.11	0.1	0.7	0.81	0.05	59.5
581	0.05	0.05	0.2	0.8	0.80	0.05	0.05	0.05	0.05	0.6	0.60	0.05	0.05	0.05	0.3	0.1	0.10	0.10	47.4
59C	0.05	0.05	0.2	0.7	0.70	0.05	0.05	0.05	0.05	0.7	0.70	0.05							39.5
64C													0.05	0.05	0.05	0.05	0.05	0.10	29.4
64H	0.05	0.13	0.2	0.6	0.73	0.10	0.05	0.05	0.05	0.8	0.8	0.05	0.05	0.05	0.05	0.6	0.6	0.10	47.8
72C	0.05	0.05	0.2	0.7	0.7	0.10	0.05	0.05	0.05	0.7	0.7	0.10							48.5
74C	0.05	0.05	0.2	0.7	0.7	0.10	0.05	0.10	0.05	0.6	0.7	0.10							45.4
82A	0.05	0.05	0.1	0.8	0.8	0.05	0.05	0.05	0.05	0.7	0.7	0.05	0.05	0.05	0.05	0.5	0.5	0.05	55.7
96A	0.05	0.05	0.2	0.7	0.7	0.10	0.05	0.11	0.05	0.8	0.91	0.05	0.05	0.05	0.05	0.6	0.6	0.05	56.7
Median		0.05	0.10	0.80	0.80	0.10		0.11	0.05	0.70	0.80	0.10		0.10	0.05	0.60	0.70	0.10	53.4
14-16		0.32	0.30	2.60	2.60	0.21		0.36	0.10	1.20	1.52	0.26		0.39	0.30	0.80	1.13	0.25	63.18
Max		0.32	0.50	2.00	2.00	0.21		0.30	0.10	1.20	1.32	U.LU		0.55	0.50	0.00			
мах		0.32	0.30	2.00	2.00	0.21		0.30	0.10	1.20	1.32	0.20		0.33	0.30	0.00	1.10		
	Nitrite (inc		TKN	= Total Kj n (organic	eldahl	High I		nutrients	s in our o	anals	1.32		onhic St						
NO2 =	Nitrite (inc	organic)	TKN Nitrogei TN =	= Total Kji	eldahl + NH4) rogen	High I can in runoff septic	dicate the or efflue system	nutrients ne prese ent from s. Exce	s in our on nce of fe wastewa	canals rtilizer iter or trients	1.Jc	TSI = Tro 28 sites	this qu	ate Inde	ex, a qui ored as	ick indic GOOD («	ator of (canal he	ealth.
NO2 = 1		organic) organic)	TKN Nitroger TN = (inorg	= Total Kji n (organic : Total Nitr	eldahl + NH4) rogen ganic)	High I can in runoff septic	dicate the or efflue systemed to nui	nutrients ne prese ent from s. Exce	s in our o nce of fe wastewa essive nu lant grow	canals rtilizer iter or trients	1.32	TSI = Tro 28 sites scored Water o	this qu FAIR (60 quality r	ate Indo arter so 0-70), an	ex, a qui ored as nd zero s	ick indic GOOD (scored P stent (G	ator of (<60). Th OOR (>)	canal he ree site 70). nrougho	ealth.
NO2 = NO3 = 1 NH3 = AI	Nitrate (ind	organic) organic)	TKN Nitroger TN = (inorg	= Total Kji n (organic : Total Nitr janic + org : Total Phi	eldahl + NH4) rogen ganic)	High I can in runoff septic	dicate the or efflue systemed to nui	nutrients ne prese ent from s. Exce sance pl	s in our o nce of fe wastewa essive nu lant grow	canals rtilizer iter or trients	1.32	TSI = Tro 28 sites scored Water of summe	this qu FAIR (60 quality r	ate Inde arter so 0-70), an emaine	ex, a qui ored as nd zero s d consis or 4th q	ick indic GOOD (« scored P stent (Go uarter re	ator of (<60). Th OOR (>: OOD) th	canal he ree site 70). rrougho Vith wa	ealth. e out the ter
NO2 = NO3 = 1 NH3 = AI	Nitrate (ind	organic) organic) norganic)	TKN Nitroger TN = (inorg	= Total Kji n (organic : Total Nitr janic + org : Total Phi	eldahl + NH4) rogen ganic)	High I can in runoff septic	dicate the or efflue systemed to nui	nutrients ne prese ent from s. Exce sance pl	s in our o nce of fe wastewa essive nu lant grow	canals rtilizer eter or trients	1.Jc	TSI = Tr 28 sites scored Water of summe quality	this qu FAIR (60 quality r r and in improv	ate Indo arter so 0-70), an emaine to fall fo ing sligh	ex, a qui ored as nd zero s nd consis or 4th q ntly this	ick indic GOOD (scored P stent (Go uarter re quarter	ator of 6 <60). Th OOR (>2 OOD) th esults. V over las	canal he iree site 70). irougho Vith wa st quart	ealth. e out the ter er.
NO2 = 1 NO3 = 1 NH3 = AI	Nitrate (ind	organic) organic) norganic)	TKN Nitroger TN = (inorg	= Total Kji n (organic : Total Nitr janic + org : Total Phi	eldahl + NH4) rogen ganic)	High I can in runoff septic	dicate the or efflue systemed to nui	nutrients ne prese ent from s. Exce sance pl	s in our o nce of fe wastewa essive nu lant grow	canals rtilizer eter or trients	1.32	TSI = Tro 28 sites scored Water of summe quality Secchi	this qu FAIR (60 quality r r and in improv measure	ate Inde arter so 0-70), an emaine to fall fo ing sligh	ex, a qui ored as nd zero s d consis or 4th q ntly this improve	ick indic GOOD (« scored P stent (Go uarter re quarter ed for m	ator of (<60). Th OOR (>: OOD) th esults. V over laste	canal he ree site 70). rougho Vith wa st quart	ealth. e out the ter eer.
NO2 = 1 NO3 = 1 NH3 = AI	Nitrate (ind	organic) organic) norganic)	TKN Nitroger TN = (inorg	= Total Kji n (organic : Total Nitr janic + org : Total Phi	eldahl + NH4) rogen ganic)	High I can in runoff septic	dicate the or efflue systemed to nui	nutrients ne prese ent from s. Exce sance pl	s in our o nce of fe wastewa essive nu lant grow	canals rtilizer eter or trients	1.32	TSI = Tro 28 sites scored Water of summe quality Secchi i reporte	this qu FAIR (60 quality r r and in improv measure	ate Inde arter so 0-70), an remaine ito fall fo ing sligh ements	ex, a qui ored as nd zero s d consis or 4th q ntly this improve	ick indic GOOD (scored P stent (Go uarter re quarter	ator of (<60). Th OOR (>: OOD) th esults. V over laste	canal he ree site 70). rougho Vith wa st quart	ealth. e out the ter er. nany
NO2 = 1 NO3 = 1 NH3 = AI	Nitrate (ind	organic) organic) norganic)	TKN Nitroger TN = (inorg	= Total Kji n (organic : Total Nitr janic + org : Total Phi	eldahl + NH4) rogen ganic)	High I can in runoff septic	dicate the or efflue systemed to nui	nutrients ne prese ent from s. Exce sance pl	s in our o nce of fe wastewa essive nu lant grow	canals rtilizer eter or trients	1.32	TSI = Tro 28 sites scored Water of summe quality Secchi	this qu FAIR (60 quality r r and in improv measure	ate Inde arter so 0-70), an remaine ito fall fo ing sligh ements	ex, a qui ored as nd zero s d consis or 4th q ntly this improve	ick indic GOOD (« scored P stent (Go uarter re quarter ed for m	ator of (<60). Th OOR (>: OOD) th esults. V over laste	canal he ree site 70). rougho Vith wa st quart	ealth. e out the ter eer.
NO2 = NO3 = 1 NH3 = AI	Nitrate (ind	organic) organic) norganic)	TKN Nitroger TN = (inorg	= Total Kji n (organic : Total Nitr janic + org : Total Phi	eldahl + NH4) rogen ganic)	High I can in runoff septic	dicate the or efflue systemed to nui	nutrients ne prese ent from s. Exce sance pl	s in our o nce of fe wastewa essive nu lant grow	canals rtilizer eter or trients	1.32	TSI = Tro 28 sites scored Water of summe quality Secchi i reporte	this qu FAIR (60 quality r r and in improv measure	ate Inde arter so 0-70), an remaine ito fall fo ing sligh ements	ex, a qui ored as nd zero s d consis or 4th q ntly this improve	ick indic GOOD (« scored P stent (Go uarter re quarter ed for m	ator of (<60). Th OOR (>: OOD) th esults. V over laste	canal he ree site 70). rougho Vith wa st quart	ealth. e out the ter eer.

For up-to-date City of Cape Environmental Resources Division water quality date visit https://www.capecoral.net/department/public_works/quarterly_water_quality_reports.php

Keep Lee County Beautiful International Coastal Cleanup

The International Coastal Cleanup is an annual event to help rid coastal environments of trash and debris. This worldwide event involves many volunteers and locally many will be needed to help in this cleanup effort to clean Florida's coastlines of pollution caused by litter. There will be many sites throughout Lee County, and all are coordinated by Keep Lee County Beautiful, Inc. (KLCB), but it is the collective effort of the volunteers that assist in collection and documentation of litter. KLCB will again be looking for volunteers for this global effort for the Annual International Coastal Cleanup. For more information, please visit KLCB.org

International Coastal Cleanup Saturday, September 17th 8:00 to 11:00 AM

City of Cape Coral Environmental Resources P.O. Box 150027 Cape Coral, FL 33915-0027